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ABSTRACT

We present preliminary results of a search for pair produced top squarks, the supersym-
metric partners to the top quark, under the assumption that the two-body decay #; — bW,
and three-body decay L — bWZl are kinematically forbidden. This scenario is realized if #
is considerably lighter than all other squarks as well as Wi, all s, and the top quark. Such
light top squarks will dominantly decay via &, — cZ yielding a signal of two acollinear jets
with ;. The data reported here were taken during the 1992-1993 run of the D@ detector
at the Fermilab Tevatron pp collider operating at /s = 1.8 TeV.
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INTRODUCTION

A spacetime symmetry, supersymmetry (SUSY) links bosons to fermions, introducing
supersymmetric partners (sparticles) to all the SM particles. In combination with Grand
Unification Theories, SUSY results in models which successfully unify the U(1), SU(2) and
SU(3) couplings at 10'® GeV yet remain consistent with the experimental proton lifetime
limits. Together with the natural solution offered to the fine-tuning problem, SUSY is an
attractive extension to the Standard Model (SM).

Early limits on squark (the SUSY partner of the quark) masses have been set under the
assumption that all squarks have the same mass. This was justified by a model that argued
all scalar particles share a common mass at the energy scale where SUSY is broken. The
degeneracy among squarks is broken only slightly by the small differences in electroweak
interactions between left and right states and the different Yukawa interactions of the various
families. However, a heavy top quark (1) means its Yukawa interactions become substantial
and can drive top squark masses lower than all other squarks. Mass-splitting by left/right
mixing may split the mass eigenstates even further, making one state, £, the lightest of all
(2).

If kinematically accessible, the top squark is expected to decay through #; — bW, If,
however, my;, > m;, +my, the chargino becomes virtual and three-body decays 11 — bl or

i — bul become accessible unless sleptons and sneutrinos are also heavier than ;. Under
this additional assumption, top squarks will dominantly decay via ¢; — ¢Z; yielding an
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event signature of two acollinear jets with 4 (3). The major backgrounds expected for
this signal are vector boson production associated with jets and Standard Model multijet
events with faked J; signals.

The top squark production occurs via gluon fusion and ¢ annihilation (4) and is thus
fixed by QCD in terms of m; . Its decay topology is determined by mj; , the mass of
the lightest neutralino. Thus the search is through a two-parameter phase space in my,
vs m;, . The region to be explored is the lower half-plane defined by the near-diagonal
m;, < my + mc, hemmed in by m; > my; + mp + mw (to restrict competing 3-body
decays).

A search was conducted for the SUSY partner of top quark, ¢, under the framework of
a supergravity-GUT inspired Minimal Supersymmetric Standard Model (MSSM) (5). The
model enforces conservation of R-parity which implies sparticles be produced in pairs, and
that the Lightest Supersymmetric Particle (LSP) must be absolutely stable (6).

The results reported here on the ¢; search are preliminary.

THE DATA SET

Data corresponding to a total integrated luminosity of 13.5 & 0.7 pb~! were collected
by the D® detector during its 1992-1993 run. D@ is a general purpose detector consisting
of a central tracking system and nearly hermetic liquid argon calorimeter surrounded by
a toroidal muon spectrometer. A detailed description can be found elsewhere (7). Events
for this analysis were collected under a missing Er (F1) trigger requiring 30 GeV E; in
hardware and 35 GeV in software.

The Single Interaction Cut

To ensure unambiguous F, assignments, we demanded events be identified as having
only one primary vertex. An algorithm that combined timing information from a set of
trigger counters together with reconstructed scalar Er and the number of vertices found
by tracking was used to select single interaction events (8). Its use effectively reduced our
data set to a single interaction equivalent luminosity of 7.4+ 0.4 pb~1.

Angular Correlation Cuts

Badly mismeasured jets can produce false £, but such events usually show a correlation
between the jet and ', directions. If a jet is identified as the leading object in an event by
an overestimate of its energy, a false ¥ signal will be induced in a direction opposite to
that of the jet. Jets with underestimated energy will tend to be aligned with the fake ;.
This is cited as the source of the clumping of events visible in the upper left-hand corner of
Fig. 1, a feature not reproduced by either the SUSY signal or any of the expected physics
backgrounds. This effect is observed not only in events from our ¥, triggers, but even those
from a low Ep threshold single jet trigger (used to study detector induced background) when
mild F; cuts are applied offline. A one-dimensional cut against high A¢(Er, jetl) values
was applied to suppress these events. Additional cuts were made against jets aligned (within
8¢ = 0.1) with the direction of the Fr.
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FIG. 1. The opening angle between J and the leading jet runs up the ordinate, its angle with
the next leading jet along the abcissa. At left are events from a low Er threshold single jet trigger,
after an offline £, > 15 GeV cut has been applied. At right are some Monte Carlo of vector boson
backgrounds.

SIGNAL

Signal events were generated using ISAJET 7.13 (9), which incorporates the latest imple-
mentation of ISASUSY (10). These files were processed through a GEANT simulation of the
D® detector (11) and reconstructed. Kinematic distributions sampled from the middle of
the parameter space to be probed (Figure 2, left) show that the leading jets are fairly high
in E7, and the ¥, is large. The latter claim, however, does not hold over the full range
of the region to be explored (Figure 2, right). Although it means sacrificing the rejection
power of a high F, cut, a relatively low cut will allow coverage of more of the parameter
space. Trigger thresholds fixed this cut at 40 GeV.
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FIG. 2. The jet Er’s are seen to be healthy (left) in this sample of m; = 70 GeV/c?

myz, = 10 GeV/c* ISAJET events. The E is respectable, although scanning the region to be
searched (right) shows Z; to be rather feeble for low m; .
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FIG. 3. The opening angle between the two leading jets tends toward higher values in the signal,
though most of our background sources show relatively flat distributions.

FINAL SELECTION CUTS

Leptons are not primarily part of our signal, but appear only incidentally insofar as charm
Jets are in the final state. These tend to be low E7 objects. We gain some rejection against
the vector boson background by discriminating against events with high-Er electrons or
muons.

The presence of two LSP’s in the event suggests that the two leading jets in our signal
be acollinear. But distributions of the opening angle between them (Fig.3) show that this
angle tends to large values. A cut of A¢(j1,352) > 90° preserves 70-75% of the signal.
Background distributions tend to be flat.

Standard Model multijet events tend to be mostly back-to-back jet pairs. Thus we must
also cut against two leading jets with an opening angle close to 7. Monte Carlo distributions
suggest an effective cut can be made at A¢(j1, 52) < 165°.

Our final selection cuts of

Er > 40 GeV
Ei*? > 30 GeV
90° < Ad(j1, j2) < 165°
10° < Ag(g1, Pr) < 125°
10° < A¢(j3,4, Br)

with a VETO against events with:

Ef > 10 GeV
EY > 10 GeV

leave a total of two candidates in the single interaction Missing Er triggers.



TABLE 1. Expected Vector Boson backgrounds to the % signal.

Background Process Expected # of events
W — ep 0.52 £0.30
W — up 0.84 4 0.42
W -1 0.99 £+ 0.64
4 — vu 0.37 £0.32
Z - ui 0.06 & 0.05
4 —TU 0.08 £+ 0.05
TOTAL 2.86 +£0.93
BACKGROUND

To estimate the vector boson associated background, we generated W/Z plus n jet samples
using the Monte Carlo (MC) generator VECBOS (12), interfaced with ISAJET (9) to dress
up the final parton states. VECBOS allowed us to specify n, the number of primary jets
associated with the vector boson production. Since ISAJET also allows control over the
decay of the tau, we were careful to count its hadronic decays as contributing to the jet
total. Events were then passed through a GEANT simulation of the D@ detector (11),
reconstructed and subjected to our selection criteria. Table 1 lists the expected background
from this source.

To estimate the contribution from Standard Model multijet production, we fit the F;
spectrum of a set of single low jet Ep triggers, and then determined the fraction of such
events that passed our selection cuts, as a function of Z,. For our final selection cuts that
contribution was predicted to be negligible.

The combined background is consistent with the number of observed candidates.

CONCLUSIONS

No excess of events, unexplained by the Standard Model, were observed. With two
candidates, our preliminary background subtracted 95% Confidence Level exclusion contour
is shown in Fig. 4. This contour intersects the m; = m; + mp +mw line at 106 GeV/c?.
The gap between the LEP limit and our own exclusion region is due to the limitation of the
E; trigger threshold. The 1994-95 data run now carries a customized filter which employs
some of the offline cuts against low-Er jets aligned with ¢(£;) permitting the Fr cut to
be lowered to 25 GeV, which may allow us to cover this area more completely. The region
between m; = mj; + m. and our excluded area requires additional statistics.
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